01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
package stdlib;
public class XLinearRegression {
private final int N;
private final double beta0, beta1;
private final double R2;
private final double svar, svar0, svar1;
public XLinearRegression(double[] x, double[] y) {
N = x.length;
// first pass
double sumx = 0.0, sumy = 0.0; //, sumx2 = 0.0;
for (int i = 0; i < N; i++) sumx += x[i];
//for (int i = 0; i < N; i++) sumx2 += x[i]*x[i];
for (int i = 0; i < N; i++) sumy += y[i];
double xbar = sumx / N;
double ybar = sumy / N;
// second pass: compute summary statistics
double xxbar = 0.0, yybar = 0.0, xybar = 0.0;
for (int i = 0; i < N; i++) {
xxbar += (x[i] - xbar) * (x[i] - xbar);
yybar += (y[i] - ybar) * (y[i] - ybar);
xybar += (x[i] - xbar) * (y[i] - ybar);
}
beta1 = xybar / xxbar;
beta0 = ybar - beta1 * xbar;
// more statistical analysis
double rss = 0.0; // residual sum of squares
double ssr = 0.0; // regression sum of squares
for (int i = 0; i < N; i++) {
double fit = beta1*x[i] + beta0;
rss += (fit - y[i]) * (fit - y[i]);
ssr += (fit - ybar) * (fit - ybar);
}
int df = N-2;
R2 = ssr / yybar;
svar = rss / df;
svar1 = svar / xxbar;
svar0 = svar/N + xbar*xbar*svar1;
}
// y = beta1*x + beta0
// y = slope*x + intercept [ rename to slope and intercept ]
public double beta0() { return beta0; }
public double beta1() { return beta1; }
// R^2
public double R2() { return R2; }
// standard error of beta0 and beta1
public double beta0StdErr() { return Math.sqrt(svar0); }
public double beta1StdErr() { return Math.sqrt(svar1); }
// predict a value of y, given a value of x
public double predict(double x) {
return beta1*x + beta0;
}
public String toString() {
String s = "";
s += String.format("%.2f N + ", beta1());
s += String.format("%.2f ", beta0());
return s + " (R^2 = " + String.format("%.3f", R2()) + ")";
}
}
|