001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
package algs64; // section 6.4
import stdlib.*;
/* ***********************************************************************
* Compilation: javac Hungarian.java
* Execution: java Hungarian N
* Dependencies: FordFulkerson.java FlowNetwork.java FlowEdge.java
*
* Solve an N-by-N assignment problem. Bare-bones implementation:
* - takes N^5 time in worst case.
* - assumes weights are >= 0 (add a large constant if not)
*
*
*********************************************************************/
public class XHungarian {
private final int N; // number of rows and columns
private final double[][] weight; // the N-by-N weight matrix
private final double[] x; // dual variables for rows
private final double[] y; // dual variables for columns
private final int[] xy; // xy[i] = j means i-j is a match
private final int[] yx; // yx[j] = i means i-j is a match
public XHungarian(double[][] weight) {
this.weight = weight;
N = weight.length;
x = new double[N];
y = new double[N];
xy = new int[N];
yx = new int[N];
for (int i = 0; i < N; i++) xy[i] = -1;
for (int j = 0; j < N; j++) yx[j] = -1;
while (true) {
// build graph of 0-reduced cost edges
FlowNetwork G = new FlowNetwork(2*N+2);
int s = 2*N, t = 2*N+1;
for (int i = 0; i < N; i++) {
if (xy[i] == -1) G.addEdge(new FlowEdge(s, i, 1.0));
else G.addEdge(new FlowEdge(s, i, 1.0, 1.0));
}
for (int j = 0; j < N; j++) {
if (yx[j] == -1) G.addEdge(new FlowEdge(N+j, t, 1.0));
else G.addEdge(new FlowEdge(N+j, t, 1.0, 1.0));
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (reduced(i, j) == 0) {
if (xy[i] != j) G.addEdge(new FlowEdge(i, N+j, 1.0));
else G.addEdge(new FlowEdge(i, N+j, 1.0, 1.0));
}
}
}
// to make N^4, start from previous solution
FordFulkerson ff = new FordFulkerson(G, s, t);
// current matching
for (int i = 0; i < N; i++) xy[i] = -1;
for (int j = 0; j < N; j++) yx[j] = -1;
for (int i = 0; i < N; i++) {
for (FlowEdge e : G.adj(i)) {
if ((e.from() == i) && (e.flow() > 0)) {
xy[i] = e.to() - N;
yx[e.to() - N] = i;
}
}
}
// perfect matching
if (ff.value() == N) break;
// find bottleneck weight
double max = Double.POSITIVE_INFINITY;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
if (ff.inCut(i) && !ff.inCut(N+j) && (reduced(i, j) < max))
max = reduced(i, j);
// update dual variables
for (int i = 0; i < N; i++)
if (!ff.inCut(i)) x[i] -= max;
for (int j = 0; j < N; j++)
if (!ff.inCut(N+j)) y[j] += max;
StdOut.println("value = " + ff.value());
}
assert check();
}
// reduced cost of i-j
private double reduced(int i, int j) {
return weight[i][j] - x[i] - y[j];
}
private double weight() {
double totalWeight = 0.0;
for (int i = 0; i < N; i++) totalWeight += weight[i][xy[i]];
return totalWeight;
}
private int sol(int i) {
return xy[i];
}
// check optimality conditions
private boolean check() {
// check that xy[] is a permutation
boolean[] perm = new boolean[N];
for (int i = 0; i < N; i++) {
if (perm[xy[i]]) {
StdOut.println("Not a perfect matching");
return false;
}
perm[xy[i]] = true;
}
// check that all edges in xy[] have 0-reduced cost
for (int i = 0; i < N; i++) {
if (reduced(i, xy[i]) != 0) {
StdOut.println("Solution does not have 0 reduced cost");
return false;
}
}
// check that all edges have >= 0 reduced cost
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (reduced(i, j) < 0) {
StdOut.println("Some edges have negative reduced cost");
return false;
}
}
}
return true;
}
public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
double[][] weight = new double[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
weight[i][j] = StdRandom.random();
XHungarian assignment = new XHungarian(weight);
StdOut.println("weight = " + assignment.weight());
for (int i = 0; i < N; i++)
StdOut.println(i + "-" + assignment.sol(i));
}
}
|