001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
// Exercise 4.4.12 (Solution published at http://algs4.cs.princeton.edu/)
package algs44;
import stdlib.*;
import algs13.Stack;
/* ***********************************************************************
* Compilation: javac EdgeWeightedDirectedCycle.java
* Execution: java EdgeWeightedDirectedCycle V E F
* Dependencies: EdgeWeightedDigraph.java DirectedEdge Stack.java
*
* Finds a directed cycle in an edge-weighted digraph.
* Runs in O(E + V) time.
*
*
*************************************************************************/
public class EdgeWeightedDirectedCycle {
private final boolean[] marked; // marked[v] = has vertex v been marked?
private final DirectedEdge[] edgeTo; // edgeTo[v] = previous edge on path to v
private final boolean[] onStack; // onStack[v] = is vertex on the stack?
private Stack<DirectedEdge> cycle; // directed cycle (or null if no such cycle)
public EdgeWeightedDirectedCycle(EdgeWeightedDigraph G) {
marked = new boolean[G.V()];
onStack = new boolean[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
// check that digraph has a cycle
assert check(G);
}
// check that algorithm computes either the topological order or finds a directed cycle
private void dfs(EdgeWeightedDigraph G, int v) {
onStack[v] = true;
marked[v] = true;
for (DirectedEdge e : G.adj(v)) {
int w = e.to();
// short circuit if directed cycle found
if (cycle != null) return;
//found new vertex, so recur
else if (!marked[w]) {
edgeTo[w] = e;
dfs(G, w);
}
// trace back directed cycle
else if (onStack[w]) {
cycle = new Stack<>();
while (e.from() != w) {
cycle.push(e);
e = edgeTo[e.from()];
}
cycle.push(e);
}
}
onStack[v] = false;
}
public boolean hasCycle() { return cycle != null; }
public Iterable<DirectedEdge> cycle() { return cycle; }
// certify that digraph is either acyclic or has a directed cycle
private boolean check(EdgeWeightedDigraph G) {
// edge-weighted digraph is cyclic
if (hasCycle()) {
// verify cycle
DirectedEdge first = null, last = null;
for (DirectedEdge e : cycle()) {
if (first == null) first = e;
if (last != null) {
if (last.to() != e.from()) {
System.err.format("cycle edges %s and %s not incident\n", last, e);
return false;
}
}
last = e;
}
if (last.to() != first.from()) {
System.err.format("cycle edges %s and %s not incident\n", last, first);
return false;
}
}
return true;
}
public static void main(String[] args) {
// create random DAG with V vertices and E edges; then add F random edges
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(V);
int[] vertices = new int[V];
for (int i = 0; i < V; i++) vertices[i] = i;
StdRandom.shuffle(vertices);
for (int i = 0; i < E; i++) {
int v, w;
do {
v = StdRandom.uniform(V);
w = StdRandom.uniform(V);
} while (v >= w);
double weight = Math.random();
G.addEdge(new DirectedEdge(v, w, weight));
}
// add F extra edges
for (int i = 0; i < F; i++) {
int v = (int) (Math.random() * V);
int w = (int) (Math.random() * V);
double weight = Math.random();
G.addEdge(new DirectedEdge(v, w, weight));
}
StdOut.println(G);
// find a directed cycle
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
if (finder.hasCycle()) {
StdOut.print("Cycle: ");
for (DirectedEdge e : finder.cycle()) {
StdOut.print(e + " ");
}
StdOut.println();
}
// or give topologial sort
else {
StdOut.println("No directed cycle");
}
}
}
|