001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
package algs44;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;
/* ***********************************************************************
 *  Compilation:  javac BellmanFordSP.java
 *  Execution:    java BellmanFordSP filename.txt s
 *  Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Queue.java
 *                EdgeWeightedDirectedCycle.java
 *  Data files:   http://algs4.cs.princeton.edu/44sp/tinyEWDn.txt
 *                http://algs4.cs.princeton.edu/44sp/mediumEWDnc.txt
 *
 *  Bellman-Ford shortest path algorithm. Computes the shortest path tree in
 *  edge-weighted digraph G from vertex s, or finds a negative cost cycle
 *  reachable from s.
 *
 *  % java BellmanFordSP tinyEWDn.txt 0
 *  0 to 0 ( 0.00)
 *  0 to 1 ( 0.93)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35   5->1  0.32
 *  0 to 2 ( 0.26)  0->2  0.26
 *  0 to 3 ( 0.99)  0->2  0.26   2->7  0.34   7->3  0.39
 *  0 to 4 ( 0.26)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25
 *  0 to 5 ( 0.61)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52   6->4 -1.25   4->5  0.35
 *  0 to 6 ( 1.51)  0->2  0.26   2->7  0.34   7->3  0.39   3->6  0.52
 *  0 to 7 ( 0.60)  0->2  0.26   2->7  0.34
 *
 *  % java BellmanFordSP tinyEWDnc.txt 0
 *  4->5  0.35
 *  5->4 -0.66
 *
 *************************************************************************/

public class BellmanFordSP {
  private final double[] distTo;               // distTo[v] = distance  of shortest s->v path
  private final DirectedEdge[] edgeTo;         // edgeTo[v] = last edge on shortest s->v path
  private final boolean[] onQueue;             // onQueue[v] = is v currently on the queue?
  private final Queue<Integer> queue;          // queue of vertices to relax
  private int cost;                      // number of calls to relax()
  private Iterable<DirectedEdge> cycle;  // negative cycle (or null if no such cycle)

  public BellmanFordSP(EdgeWeightedDigraph G, int s) {
    distTo  = new double[G.V()];
    edgeTo  = new DirectedEdge[G.V()];
    onQueue = new boolean[G.V()];
    for (int v = 0; v < G.V(); v++)
      distTo[v] = Double.POSITIVE_INFINITY;
    distTo[s] = 0.0;

    // Bellman-Ford algorithm
    queue = new Queue<>();
    queue.enqueue(s);
    onQueue[s] = true;
    while (!queue.isEmpty() && !hasNegativeCycle()) {
      int v = queue.dequeue();
      onQueue[v] = false;
      relax(G, v);
    }

    assert check(G, s);
  }

  // relax vertex v and put other endpoints on queue if changed
  private void relax(EdgeWeightedDigraph G, int v) {
    for (DirectedEdge e : G.adj(v)) {
      int w = e.to();
      if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!onQueue[w]) {
          queue.enqueue(w);
          onQueue[w] = true;
        }
      }
      if (cost++ % G.V() == 0)
        findNegativeCycle();
    }
  }


  // is there a negative cycle reachable from s?
  public boolean hasNegativeCycle() {
    return cycle != null;
  }

  // return a negative cycle; null if no such cycle
  public Iterable<DirectedEdge> negativeCycle() {
    return cycle;
  }

  // by finding a cycle in predecessor graph
  private void findNegativeCycle() {
    int V = edgeTo.length;
    EdgeWeightedDigraph spt = new EdgeWeightedDigraph(V);
    for (int v = 0; v < V; v++)
      if (edgeTo[v] != null)
        spt.addEdge(edgeTo[v]);

    EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt);
    cycle = finder.cycle();
  }

  // is there a path from s to v?
  public boolean hasPathTo(int v) {
    return distTo[v] < Double.POSITIVE_INFINITY;
  }


  // return length of shortest path from s to v
  public double distTo(int v) {
    return distTo[v];
  }

  // return view of shortest path from s to v, null if no such path
  public Iterable<DirectedEdge> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<DirectedEdge> path = new Stack<>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
      path.push(e);
    }
    return path;
  }

  // check optimality conditions: either
  // (i) there exists a negative cycle reacheable from s
  //     or
  // (ii)  for all edges e = v->w:            distTo[w] <= distTo[v] + e.weight()
  // (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight()
  private boolean check(EdgeWeightedDigraph G, int s) {

    // has a negative cycle
    if (hasNegativeCycle()) {
      double weight = 0.0;
      for (DirectedEdge e : negativeCycle()) {
        weight += e.weight();
      }
      if (weight >= 0.0) {
        System.err.println("error: weight of negative cycle = " + weight);
        return false;
      }
    }

    // no negative cycle reachable from source
    else {

      // check that distTo[v] and edgeTo[v] are consistent
      if (distTo[s] != 0.0 || edgeTo[s] != null) {
        System.err.println("distanceTo[s] and edgeTo[s] inconsistent");
        return false;
      }
      for (int v = 0; v < G.V(); v++) {
        if (v == s) continue;
        if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
          System.err.println("distTo[] and edgeTo[] inconsistent");
          return false;
        }
      }

      // check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
      for (int v = 0; v < G.V(); v++) {
        for (DirectedEdge e : G.adj(v)) {
          int w = e.to();
          if (distTo[v] + e.weight() < distTo[w]) {
            System.err.println("edge " + e + " not relaxed");
            return false;
          }
        }
      }

      // check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
      for (int w = 0; w < G.V(); w++) {
        if (edgeTo[w] == null) continue;
        DirectedEdge e = edgeTo[w];
        int v = e.from();
        if (w != e.to()) return false;
        if (distTo[v] + e.weight() != distTo[w]) {
          System.err.println("edge " + e + " on shortest path not tight");
          return false;
        }
      }
    }

    StdOut.println("Satisfies optimality conditions");
    StdOut.println();
    return true;
  }



  public static void main(String[] args) {
    In in = new In(args[0]);
    int s = Integer.parseInt(args[1]);
    EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);

    BellmanFordSP sp = new BellmanFordSP(G, s);

    // print negative cycle
    if (sp.hasNegativeCycle()) {
      for (DirectedEdge e : sp.negativeCycle())
        StdOut.println(e);
    }

    // print shortest paths
    else {
      for (int v = 0; v < G.V(); v++) {
        if (sp.hasPathTo(v)) {
          StdOut.format("%d to %d (%5.2f)  ", s, v, sp.distTo(v));
          for (DirectedEdge e : sp.pathTo(v)) {
            StdOut.print(e + "   ");
          }
          StdOut.println();
        }
        else {
          StdOut.format("%d to %d           no path\n", s, v);
        }
      }
    }

  }

}