01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
// Exercise 4.4.28 (Solution published at http://algs4.cs.princeton.edu/)
package algs44;
import stdlib.*;
import algs13.Stack;
import algs42.Topological;
/* ***********************************************************************
* Compilation: javac AcyclicLP.java
* Execution: java AcyclicP V E
* Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Topological.java
* Data files: http://algs4.cs.princeton.edu/44sp/tinyEWDAG.txt
*
* Computes longest paths in an edge-weighted acyclic digraph.
*
* Remark: should probably check that graph is a DAG before running
*
* % java AcyclicLP tinyEWDAG.txt 5
* 5 to 0 (2.44) 5->1 0.32 1->3 0.29 3->6 0.52 6->4 0.93 4->0 0.38
* 5 to 1 (0.32) 5->1 0.32
* 5 to 2 (2.77) 5->1 0.32 1->3 0.29 3->6 0.52 6->4 0.93 4->7 0.37 7->2 0.34
* 5 to 3 (0.61) 5->1 0.32 1->3 0.29
* 5 to 4 (2.06) 5->1 0.32 1->3 0.29 3->6 0.52 6->4 0.93
* 5 to 5 (0.00)
* 5 to 6 (1.13) 5->1 0.32 1->3 0.29 3->6 0.52
* 5 to 7 (2.43) 5->1 0.32 1->3 0.29 3->6 0.52 6->4 0.93 4->7 0.37
*
*************************************************************************/
public class AcyclicLP {
private final double[] distTo; // distTo[v] = distance of longest s->v path
private final DirectedEdge[] edgeTo; // edgeTo[v] = last edge on longest s->v path
public AcyclicLP(EdgeWeightedDigraph G, int s) {
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++) distTo[v] = Double.NEGATIVE_INFINITY;
distTo[s] = 0.0;
// relax vertices in toplogical order
Topological topological = new Topological(G);
for (int v : topological.order()) {
for (DirectedEdge e : G.adj(v))
relax(e);
}
}
// relax edge e, but update if you find a *longer* path
private void relax(DirectedEdge e) {
int v = e.from(), w = e.to();
if (distTo[w] < distTo[v] + e.weight()) {
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
}
}
// return length of the longest path from s to v, -infinity if no such path
public double distTo(int v) {
return distTo[v];
}
// is there a path from s to v?
public boolean hasPathTo(int v) {
return distTo[v] > Double.NEGATIVE_INFINITY;
}
// return view of longest path from s to v, null if no such path
public Iterable<DirectedEdge> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<DirectedEdge> path = new Stack<>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
path.push(e);
}
return path;
}
public static void main(String[] args) {
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
AcyclicLP lp = new AcyclicLP(G, s);
for (int v = 0; v < G.V(); v++) {
if (lp.hasPathTo(v)) {
StdOut.format("%d to %d (%.2f) ", s, v, lp.distTo(v));
for (DirectedEdge e : lp.pathTo(v)) {
StdOut.print(e + " ");
}
StdOut.println();
}
else {
StdOut.format("%d to %d no path\n", s, v);
}
}
}
}
|