001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
// Exercise 4.3.21 4.3.22 (Solution published at http://algs4.cs.princeton.edu/)
package algs43;
import stdlib.*;
import algs13.Queue;
import algs15.WeightedUF;
import algs24.IndexMinPQ;
/* ****************************************************************************
* Compilation: javac PrimMST.java
* Execution: java PrimMST filename.txt
* Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
* IndexMinPQ.java UF.java In.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
*
* Compute a minimum spanning forest using Prim's algorithm.
*
* % java PrimMST tinyEWG.txt
* 1-7 0.19000
* 0-2 0.26000
* 2-3 0.17000
* 4-5 0.35000
* 5-7 0.28000
* 6-2 0.40000
* 0-7 0.16000
* 1.81000
*
* % java PrimMST mediumEWG.txt
* 1-72 0.06506
* 2-86 0.05980
* 3-67 0.09725
* 4-55 0.06425
* 5-102 0.03834
* 6-129 0.05363
* 7-157 0.00516
* ...
* 10.46351
*
* % java PrimMST largeEWG.txt
* ...
* 647.66307
*
******************************************************************************/
public class PrimMST {
private final Edge[] edgeTo; // edgeTo[v] = shortest edge from tree vertex to non-tree vertex
private final double[] distTo; // distTo[v] = weight of shortest such edge
private final boolean[] marked; // marked[v] = true if v on tree, false otherwise
private final IndexMinPQ<Double> pq;
public PrimMST(EdgeWeightedGraph G) {
edgeTo = new Edge[G.V()];
distTo = new double[G.V()];
marked = new boolean[G.V()];
pq = new IndexMinPQ<>(G.V());
for (int v = 0; v < G.V(); v++) distTo[v] = Double.POSITIVE_INFINITY;
for (int v = 0; v < G.V(); v++) // run from each vertex to find
if (!marked[v]) prim(G, v); // minimum spanning forest
// check optimality conditions
assert check(G);
}
// run Prim's algorithm in graph G, starting from vertex s
private void prim(EdgeWeightedGraph G, int s) {
distTo[s] = 0.0;
pq.insert(s, distTo[s]);
while (!pq.isEmpty()) {
int v = pq.delMin();
scan(G, v);
}
}
// scan vertex v
private void scan(EdgeWeightedGraph G, int v) {
marked[v] = true;
for (Edge e : G.adj(v)) {
int w = e.other(v);
if (marked[w]) continue; // v-w is obsolete edge
if (e.weight() < distTo[w]) {
distTo[w] = e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
}
// return iterator of edges in MST
public Iterable<Edge> edges() {
Queue<Edge> mst = new Queue<>();
for (Edge e : edgeTo) {
if (e != null) {
mst.enqueue(e);
}
}
return mst;
}
// return weight of MST
public double weight() {
double weight = 0.0;
for (Edge e : edges())
weight += e.weight();
return weight;
}
// check optimality conditions (takes time proportional to E V lg* V)
private boolean check(EdgeWeightedGraph G) {
// check weight
double totalWeight = 0.0;
for (Edge e : edges()) {
totalWeight += e.weight();
}
double EPSILON = 1E-12;
if (Math.abs(totalWeight - weight()) > EPSILON) {
System.err.format("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
return false;
}
// check that it is acyclic
WeightedUF uf = new WeightedUF(G.V());
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
if (uf.connected(v, w)) {
System.err.println("Not a forest");
return false;
}
uf.union(v, w);
}
// check that it is a spanning forest
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
if (!uf.connected(v, w)) {
System.err.println("Not a spanning forest");
return false;
}
}
// check that it is a minimal spanning forest (cut optimality conditions)
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
// all edges in MST except e
uf = new WeightedUF(G.V());
for (Edge f : edges()) {
int x = f.either(), y = f.other(x);
if (f != e) uf.union(x, y);
}
// check that e is min weight edge in crossing cut
for (Edge f : G.edges()) {
int x = f.either(), y = f.other(x);
if (!uf.connected(x, y)) {
if (f.weight() < e.weight()) {
System.err.println("Edge " + f + " violates cut optimality conditions");
return false;
}
}
}
}
return true;
}
public static void main(String[] args) {
args = new String[] { "data/10000EWG.txt" };
//args = new String[] { "data/mediumEWG.txt" };
//args = new String[] { "data/largeEWG.txt" };
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST mst = new PrimMST(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
}
StdOut.format("%.5f\n", mst.weight());
}
}
|