001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Exercise 4.3.43 (Solution published at http://algs4.cs.princeton.edu/)
package algs43;
import stdlib.*;
import algs13.Bag;
import algs15.WeightedUF;
/* ***********************************************************************
 *  Compilation:  javac BoruvkaMST.java
 *  Execution:    java BoruvkaMST filename.txt
 *  Dependencies: EdgeWeightedGraph.java Edge.java Bag.java
 *                UF.java In.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
 *                http://algs4.cs.princeton.edu/43mst/largeEWG.txt
 *
 *  Compute a minimum spanning forest using Boruvka's algorithm.
 *
 *  % java BoruvkaMST tinyEWG.txt
 *  0-2 0.26000
 *  6-2 0.40000
 *  5-7 0.28000
 *  4-5 0.35000
 *  2-3 0.17000
 *  1-7 0.19000
 *  0-7 0.16000
 *  1.81000
 *
 *************************************************************************/


public class BoruvkaMST {
  private final Bag<Edge> mst = new Bag<>();    // edges in MST
  private double weight;                      // weight of MST

  // Boruvka's algorithm
  public BoruvkaMST(EdgeWeightedGraph G) {
    WeightedUF uf = new WeightedUF(G.V());

    // repeat at most log V times or until we have V-1 edges
    for (int t = 1; t < G.V() && mst.size() < G.V() - 1; t = t + t) {

      // foreach tree in forest, find closest edge
      // if edge weights are equal, ties are broken in favor of first edge in G.edges()
      Edge[] closest = new Edge[G.V()];
      for (Edge e : G.edges()) {
        int v = e.either(), w = e.other(v);
        int i = uf.find(v), j = uf.find(w);
        if (i == j) continue;   // same tree
        if (closest[i] == null || less(e, closest[i])) closest[i] = e;
        if (closest[j] == null || less(e, closest[j])) closest[j] = e;
      }

      // add newly discovered edges to MST
      for (int i = 0; i < G.V(); i++) {
        Edge e = closest[i];
        if (e != null) {
          int v = e.either(), w = e.other(v);
          // don't add the same edge twice
          if (!uf.connected(v, w)) {
            mst.add(e);
            weight += e.weight();
            uf.union(v, w);
          }
        }
      }
    }

    // check optimality conditions
    assert check(G);
  }


  // edges in minimum spanning forest, as an Iterable
  public Iterable<Edge> edges() {
    return mst;
  }

  // weight of minimum spanning forest
  public double weight() {
    return weight;
  }

  // is the weight of edge e strictly less than that of edge f?
  private static boolean less(Edge e, Edge f) {
    return e.weight() < f.weight();
  }

  // check optimality conditions (takes time proportional to E V lg* V)
  private boolean check(EdgeWeightedGraph G) {

    // check weight
    double totalWeight = 0.0;
    for (Edge e : edges()) {
      totalWeight += e.weight();
    }
    double EPSILON = 1E-12;
    if (Math.abs(totalWeight - weight()) > EPSILON) {
      System.err.format("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
      return false;
    }

    // check that it is acyclic
    WeightedUF uf = new WeightedUF(G.V());
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);
      if (uf.connected(v, w)) {
        System.err.println("Not a forest");
        return false;
      }
      uf.union(v, w);
    }

    // check that it is a spanning forest
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);
      if (!uf.connected(v, w)) {
        System.err.println("Not a spanning forest");
        return false;
      }
    }

    // check that it is a minimal spanning forest (cut optimality conditions)
    for (Edge e : edges()) {
      int v = e.either(), w = e.other(v);

      // all edges in MST except e
      uf = new WeightedUF(G.V());
      for (Edge f : mst) {
        int x = f.either(), y = f.other(x);
        if (f != e) uf.union(x, y);
      }

      // check that e is min weight edge in crossing cut
      for (Edge f : G.edges()) {
        int x = f.either(), y = f.other(x);
        if (!uf.connected(x, y)) {
          if (f.weight() < e.weight()) {
            System.err.println("Edge " + f + " violates cut optimality conditions");
            return false;
          }
        }
      }

    }

    return true;
  }

  public static void main(String[] args) {
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    BoruvkaMST mst = new BoruvkaMST(G);
    for (Edge e : mst.edges()) {
      StdOut.println(e);
    }
    StdOut.format("%.5f\n", mst.weight());
  }

}