01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
package algs42;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
* Compilation: javac BruteSCC.java
* Dependencies: Digraph.java TransitiveClosure.java
*
* Compute the strongly-connected components of a digraph using
* brute force.
*
* Runs in O(EV) time.
*
* % java BruteSCC tinyDG.txt
* 5 components
* 0 2 3 4 5
* 1
* 6
* 7 8
* 9 10 11 12
*
*************************************************************************/
public class XBruteSCC {
private int count; // number of strongly connected components
private final int[] id; // id[v] = id of strong component containing v
public XBruteSCC(Digraph G) {
// initially each vertex is in its own component
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
id[v] = v;
// compute transitive closure
TransitiveClosure tc = new TransitiveClosure(G);
// if v and w are mutally reachable, assign v to w's component
for (int v = 0; v < G.V(); v++)
for (int w = 0; w < v; w++)
if (tc.reachable(v, w) && tc.reachable(w, v))
id[v] = id[w];
// compute number of strongly connected components
for (int v = 0; v < G.V(); v++)
if (id[v] == v)
count++;
}
// return the number of strongly connected components
public int count() { return count; }
// are v and w strongly connected?
public boolean stronglyConnected(int v, int w) {
return id[v] == id[w];
}
// in which strongly connected component is vertex v?
public int id(int v) { return id[v]; }
public static void main(String[] args) {
args = new String[] { "data/tinyDG.txt" };
In in = new In(args[0]);
Digraph G = DigraphGenerator.fromIn(in);
XBruteSCC scc = new XBruteSCC(G);
// number of connected components
int M = scc.count();
StdOut.println(M + " components");
// compute list of vertices in each strong component
@SuppressWarnings("unchecked")
final
Queue<Integer>[] components = new Queue[G.V()];
for (int i = 0; i < G.V(); i++) {
components[i] = new Queue<>();
}
for (int v = 0; v < G.V(); v++) {
components[scc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < G.V(); i++) {
if (!components[i].isEmpty()) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}
}
|