001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
package algs42;
import algs35.SET;
import algs13.Stack;
import  stdlib.*;

/*************************************************************************
 *  Compilation:  javac DigraphGenerator.java
 *  Execution:    java DigraphGenerator V E
 *  Dependencies: Digraph.java
 *
 *  A digraph generator.
 *
 *************************************************************************/

/**
 *  The {@code DigraphGenerator} class provides static methods for creating
 *  various digraphs, including Erdos-Renyi random digraphs, random DAGs,
 *  random rooted trees, random rooted DAGs, random tournaments, path digraphs,
 *  cycle digraphs, and the complete digraph.
 *  <p>
 *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class DigraphGenerator {
  private static class Edge implements Comparable<Edge> {
    private int v;
    private int w;
    private Edge(int v, int w) {
      this.v = v;
      this.w = w;
    }
    public int compareTo(Edge that) {
      if (this.v < that.v) return -1;
      if (this.v > that.v) return +1;
      if (this.w < that.w) return -1;
      if (this.w > that.w) return +1;
      return 0;
    }
  }

  public static Digraph fromIn(In in) {
    Digraph G = new Digraph (in.readInt());
    int E = in.readInt();
    if (E < 0) throw new IllegalArgumentException("Number of edges in a Digraph must be nonnegative");
    for (int i = 0; i < E; i++) {
      int v = in.readInt();
      int w = in.readInt();
      G.addEdge(v, w);
    }
    return G;
  }
  public static Digraph copy (Digraph G) {
    Digraph R = new Digraph (G.V());
        for (int v = 0; v < G.V(); v++) {
            // reverse so that adjacency list is in same order as original
            Stack<Integer> reverse = new Stack<Integer>();
            for (int w : G.adj(v)) {
                reverse.push(w);
            }
            for (int w : reverse) {
                R.addEdge (v, w);
            }
        }
    return R;
  }
  /**
   * Create a random digraph with V vertices and E edges.
   * Expected running time is proportional to V + E.
   */
  public static Digraph random(int V, int E) {
    if (E < 0) throw new Error("Number of edges must be nonnegative");
    Digraph G = new Digraph(V);

    for (int i = 0; i < E; i++) {
      int v = (int) (Math.random() * V);
      int w = (int) (Math.random() * V);
      G.addEdge(v, w);
    }
    return G;
  }
  /**
   * Returns a random simple digraph containing {@code V} vertices and {@code E} edges.
   * @param V the number of vertices
   * @param E the number of vertices
   * @return a random simple digraph on {@code V} vertices, containing a total
   *     of {@code E} edges
   * @throws IllegalArgumentException if no such simple digraph exists
   */
  public static Digraph simple(int V, int E) {
    if (E > (long) V*(V-1)) throw new IllegalArgumentException("Too many edges");
    if (E < 0)              throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v != w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(v, w);
      }
    }
    return G;
  }

  /**
   * Returns a random simple digraph on {@code V} vertices, with an
   * edge between any two vertices with probability {@code p}. This is sometimes
   * referred to as the Erdos-Renyi random digraph model.
   * This implementations takes time propotional to V^2 (even if {@code p} is small).
   * @param V the number of vertices
   * @param p the probability of choosing an edge
   * @return a random simple digraph on {@code V} vertices, with an edge between
   *     any two vertices with probability {@code p}
   * @throws IllegalArgumentException if probability is not between 0 and 1
   */
  public static Digraph simple(int V, double p) {
    if (p < 0.0 || p > 1.0)
      throw new IllegalArgumentException("Probability must be between 0 and 1");
    Digraph G = new Digraph(V);
    for (int v = 0; v < V; v++)
      for (int w = 0; w < V; w++)
        if (v != w)
          if (StdRandom.bernoulli(p))
            G.addEdge(v, w);
    return G;
  }

  /**
   * Returns the complete digraph on {@code V} vertices.
   * @param V the number of vertices
   * @return the complete digraph on {@code V} vertices
   */
  public static Digraph complete(int V) {
    return simple(V, V*(V-1));
  }

  /**
   * Returns a random simple DAG containing {@code V} vertices and {@code E} edges.
   * Note: it is not uniformly selected at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of vertices
   * @return a random simple DAG on {@code V} vertices, containing a total
   *     of {@code E} edges
   * @throws IllegalArgumentException if no such simple DAG exists
   */
  public static Digraph dag(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < 0)                  throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }
    return G;
  }

  /**
   * Returns a random tournament digraph on {@code V} vertices. A tournament digraph
   * is a DAG in which for every two vertices, there is one directed edge.
   * A tournament is an oriented complete graph.
   * @param V the number of vertices
   * @return a random tournament digraph on {@code V} vertices
   */
  public static Digraph tournament(int V) {
    return dag(V, V*(V-1)/2);
  }

  /**
   * Returns a random rooted-in DAG on {@code V} vertices and {@code E} edges.
   * A rooted in-tree is a DAG in which there is a single vertex
   * reachable from every other vertex.
   * The DAG returned is not chosen uniformly at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of edges
   * @return a random rooted-in DAG on {@code V} vertices and {@code E} edges
   */
  public static Digraph rootedInDAG(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < V-1)                throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();

    // fix a topological order
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);

    // one edge pointing from each vertex, other than the root = vertices[V-1]
    for (int v = 0; v < V-1; v++) {
      int w = StdRandom.uniform(v+1, V);
      Edge e = new Edge(v, w);
      set.add(e);
      G.addEdge(vertices[v], vertices[w]);
    }

    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }
    return G;
  }

  /**
   * Returns a random rooted-out DAG on {@code V} vertices and {@code E} edges.
   * A rooted out-tree is a DAG in which every vertex is reachable from a
   * single vertex.
   * The DAG returned is not chosen uniformly at random among all such DAGs.
   * @param V the number of vertices
   * @param E the number of edges
   * @return a random rooted-out DAG on {@code V} vertices and {@code E} edges
   */
  public static Digraph rootedOutDAG(int V, int E) {
    if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
    if (E < V-1)                throw new IllegalArgumentException("Too few edges");
    Digraph G = new Digraph(V);
    SET<Edge> set = new SET<>();

    // fix a topological order
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);

    // one edge pointing from each vertex, other than the root = vertices[V-1]
    for (int v = 0; v < V-1; v++) {
      int w = StdRandom.uniform(v+1, V);
      Edge e = new Edge(w, v);
      set.add(e);
      G.addEdge(vertices[w], vertices[v]);
    }

    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(w, v);
      if ((v < w) && !set.contains(e)) {
        set.add(e);
        G.addEdge(vertices[w], vertices[v]);
      }
    }
    return G;
  }

  /**
   * Returns a random rooted-in tree on {@code V} vertices.
   * A rooted in-tree is an oriented tree in which there is a single vertex
   * reachable from every other vertex.
   * The tree returned is not chosen uniformly at random among all such trees.
   * @param V the number of vertices
   * @return a random rooted-in tree on {@code V} vertices
   */
  public static Digraph rootedInTree(int V) {
    return rootedInDAG(V, V-1);
  }

  /**
   * Returns a random rooted-out tree on {@code V} vertices. A rooted out-tree
   * is an oriented tree in which each vertex is reachable from a single vertex.
   * It is also known as a <em>arborescence</em> or <em>branching</em>.
   * The tree returned is not chosen uniformly at random among all such trees.
   * @param V the number of vertices
   * @return a random rooted-out tree on {@code V} vertices
   */
  public static Digraph rootedOutTree(int V) {
    return rootedOutDAG(V, V-1);
  }

  /**
   * Returns a path digraph on {@code V} vertices.
   * @param V the number of vertices in the path
   * @return a digraph that is a directed path on {@code V} vertices
   */
  public static Digraph path(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 0; i < V-1; i++) {
      G.addEdge(vertices[i], vertices[i+1]);
    }
    return G;
  }

  /**
   * Returns a complete binary tree digraph on {@code V} vertices.
   * @param V the number of vertices in the binary tree
   * @return a digraph that is a complete binary tree on {@code V} vertices
   */
  public static Digraph binaryTree(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 1; i < V; i++) {
      G.addEdge(vertices[i], vertices[(i-1)/2]);
    }
    return G;
  }

  /**
   * Returns a cycle digraph on {@code V} vertices.
   * @param V the number of vertices in the cycle
   * @return a digraph that is a directed cycle on {@code V} vertices
   */
  public static Digraph cycle(int V) {
    Digraph G = new Digraph(V);
    int[] vertices = new int[V];
    for (int i = 0; i < V; i++) vertices[i] = i;
    StdRandom.shuffle(vertices);
    for (int i = 0; i < V-1; i++) {
      G.addEdge(vertices[i], vertices[i+1]);
    }
    G.addEdge(vertices[V-1], vertices[0]);
    return G;
  }
  
    /**
     * Returns an Eulerian cycle digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a digraph that is a directed Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Digraph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }

    /**
     * Returns an Eulerian path digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a digraph that is a directed Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Digraph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }


  /**
   * Returns a random simple digraph on {@code V} vertices, {@code E}
   * edges and (at most) {@code c} strong components. The vertices are randomly
   * assigned integer labels between  {@code 0} and {@code c-1} (corresponding to
   * strong components). Then, a strong component is created among the vertices
   * with the same label. Next, random edges (either between two vertices with
   * the same labels or from a vertex with a smaller label to a vertex with a
   * larger label). The number of components will be equal to the number of
   * distinct labels that are assigned to vertices.
   *
   * @param V the number of vertices
   * @param E the number of edges
   * @param c the (maximum) number of strong components
   * @return a random simple digraph on {@code V} vertices and
               {@code E} edges, with (at most) {@code c} strong components
   * @throws IllegalArgumentException if {@code c} is larger than {@code V}
   */
  public static Digraph strong(int V, int E, int c) {
    if (c >= V || c <= 0)
      throw new IllegalArgumentException("Number of components must be between 1 and V");
    if (E <= 2*(V-c))
      throw new IllegalArgumentException("Number of edges must be at least 2(V-c)");
    if (E > (long) V*(V-1) / 2)
      throw new IllegalArgumentException("Too many edges");

    // the digraph
    Digraph G = new Digraph(V);

    // edges added to G (to avoid duplicate edges)
    SET<Edge> set = new SET<>();

    int[] label = new int[V];
    for (int v = 0; v < V; v++)
      label[v] = StdRandom.uniform(c);

    // make all vertices with label c a strong component by
    // combining a rooted in-tree and a rooted out-tree
    for (int i = 0; i < c; i++) {
      // how many vertices in component c
      int count = 0;
      for (int v = 0; v < G.V(); v++) {
        if (label[v] == i) count++;
      }

      // if (count == 0) System.err.println("less than desired number of strong components");

      int[] vertices = new int[count];
      int j = 0;
      for (int v = 0; v < V; v++) {
        if (label[v] == i) vertices[j++] = v;
      }
      StdRandom.shuffle(vertices);

      // rooted-in tree with root = vertices[count-1]
      for (int v = 0; v < count-1; v++) {
        int w = StdRandom.uniform(v+1, count);
        Edge e = new Edge(w, v);
        set.add(e);
        G.addEdge(vertices[w], vertices[v]);
      }

      // rooted-out tree with root = vertices[count-1]
      for (int v = 0; v < count-1; v++) {
        int w = StdRandom.uniform(v+1, count);
        Edge e = new Edge(v, w);
        set.add(e);
        G.addEdge(vertices[v], vertices[w]);
      }
    }

    while (G.E() < E) {
      int v = StdRandom.uniform(V);
      int w = StdRandom.uniform(V);
      Edge e = new Edge(v, w);
      if (!set.contains(e) && v != w && label[v] <= label[w]) {
        set.add(e);
        G.addEdge(v, w);
      }
    }

    return G;
  }

  /**
   * Unit tests the {@code DigraphGenerator} library.
   */
  private static void print (Digraph G, String filename) {
    System.out.println(filename);
    System.out.println(G);
    System.out.println();
    G.toGraphviz (filename + ".png");
  }
  public static void main(String[] args) {
    args = new String [] { "6", "10", "0.25", "3" };

    int V = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    double p = Double.parseDouble (args[2]);
    int c = Integer.parseInt(args[3]);

    for (int i=5; i>0; i--) {
      print(DigraphGenerator.random(V,E), "random-" + V + "-" + E);
      print(DigraphGenerator.simple(V,E), "simpleA-" + V + "-" + E);
      print(DigraphGenerator.simple(V,p), "simpleB-" + V + "-" + p);
      print(DigraphGenerator.complete(V), "complete-" + V);
      print(DigraphGenerator.dag(V,E), "dag-" + V + "-" + E);
      print(DigraphGenerator.tournament(V), "tournament-" + V);
      print(DigraphGenerator.rootedInDAG(V,E), "rootedInDAG-" + V + "-" + E);
      print(DigraphGenerator.rootedOutDAG(V,E), "rootedOutDAG-" + V + "-" + E);
      print(DigraphGenerator.rootedInTree(V), "rootedInTree-" + V);
      print(DigraphGenerator.rootedOutTree(V), "rootedOutTree-" + V);
      print(DigraphGenerator.path(V), "path-" + V);
      print(DigraphGenerator.binaryTree(V), "rootedInTreeBinary-" + V);
      print(DigraphGenerator.cycle(V), "cycle-" + V);
      if (E <= 2*(V-c)) E = 2*(V-c)+1;
      print(DigraphGenerator.strong(V,E,c), "strong-" + V + "-" + E + "-" + c);
    }
  }
}