001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// Exercise 4.1.13 (Solution published at http://algs4.cs.princeton.edu/)
package algs41;
import stdlib.*;
import algs13.Queue;
import algs13.Stack;
/* ***********************************************************************
* Compilation: javac BreadthFirstPaths.java
* Execution: java BreadthFirstPaths G s
* Dependencies: Graph.java Queue.java Stack.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/41undirected/tinyCG.txt
*
* Run breadth first search on an undirected graph.
* Runs in O(E + V) time.
*
* % java Graph tinyCG.txt
* 6 8
* 0: 2 1 5
* 1: 0 2
* 2: 0 1 3 4
* 3: 5 4 2
* 4: 3 2
* 5: 3 0
*
* % java BreadthFirstPaths tinyCG.txt 0
* 0 to 0 (0): 0
* 0 to 1 (1): 0-1
* 0 to 2 (1): 0-2
* 0 to 3 (2): 0-2-3
* 0 to 4 (2): 0-2-4
* 0 to 5 (1): 0-5
*
*************************************************************************/
public class BreadthFirstPaths {
private static final int INFINITY = Integer.MAX_VALUE;
private final boolean[] marked; // marked[v] = is there an s-v path
private final int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
private final int[] distTo; // distTo[v] = number of edges shortest s-v path
// single source
public BreadthFirstPaths(Graph G, int s) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
bfs(G, s);
assert check(G, s);
}
// multiple sources
public BreadthFirstPaths(Graph G, Iterable<Integer> sources) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
bfs(G, sources);
}
// BFS from single soruce
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<>();
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
distTo[s] = 0;
marked[s] = true;
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
// BFS from multiple sources
private void bfs(Graph G, Iterable<Integer> sources) {
Queue<Integer> q = new Queue<>();
for (int s : sources) {
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
// is there a path between s (or sources) and v?
public boolean hasPathTo(int v) {
return marked[v];
}
// length of shortest path between s (or sources) and v
public int distTo(int v) {
return distTo[v];
}
// shortest path bewteen s (or sources) and v; null if no such path
public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
}
// check optimality conditions for single source
private boolean check(Graph G, int s) {
// check that the distance of s = 0
if (distTo[s] != 0) {
StdOut.println("distance of source " + s + " to itself = " + distTo[s]);
return false;
}
// check that for each edge v-w dist[w] <= dist[v] + 1
// provided v is reachable from s
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (hasPathTo(v) != hasPathTo(w)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v));
StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w));
return false;
}
if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
}
// check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1
// provided v is reachable from s
for (int w = 0; w < G.V(); w++) {
if (!hasPathTo(w) || w == s) continue;
int v = edgeTo[w];
if (distTo[w] != distTo[v] + 1) {
StdOut.println("shortest path edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
return true;
}
// test client
public static void main(String[] args) {
//args = new String [] { "data/tinyAG.txt", "0"};
args = new String [] { "data/tinyG.txt", "0" };
In in = new In(args[0]);
Graph G = GraphGenerator.fromIn (in);
StdOut.println(G);
int s = Integer.parseInt(args[1]);
BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
for (int v = 0; v < G.V(); v++) {
if (bfs.hasPathTo(v)) {
StdOut.format("%d to %d (%d): ", s, v, bfs.distTo(v));
for (int x : bfs.pathTo(v)) {
if (x == s) StdOut.print(x);
else StdOut.print("-" + x);
}
StdOut.println();
}
else {
StdOut.format("%d to %d (-): not connected\n", s, v);
}
}
}
}
|