001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
package algs35;
import stdlib.*;
import java.util.HashMap;
import java.util.TreeSet;
/* ***********************************************************************
* Compilation: javac IndirectPQ.java
* Execution: java IndirectPQ
*
* Indirect priority queue implementation with Java's TreeSet and
* HashMap. It assumes the priorities are integers and the values
* are strings, although it is easily modifiable for Comparable
* priorities and Object values.
*
* % java IndirectPQ
* this
* is
* a
* test
*
* Remarks
* -------
* All operations are efficient, but it could be improved by using
* a binary heap instead of the red-black tree.
*
*************************************************************************/
public class XIndirectPQ {
private final TreeSet<Element> pq = new TreeSet<>();
private final HashMap<String,Element> st = new HashMap<>();
private static class Element implements Comparable<Element> {
public final String key;
public final int priority;
public Element(String key, int priority) {
this.key = key;
this.priority = priority;
}
public int compareTo(Element object) {
Element e = object;
if (priority != e.priority) return priority - e.priority;
return key.compareTo(e.key);
}
public boolean equals(Object e) {
if (e == null) return false;
Element that = (Element) e;
return (priority == that.priority && key.equals(that.key));
}
}
public boolean isEmpty() { return pq.isEmpty(); }
public int size() { return pq.size(); }
// insert a key with a given priority (changing the priority if the key is present)
public void put(String key, int priority) {
delete(key);
Element e = new Element(key, priority);
st.put(key, e);
pq.add(e);
}
// does the key exist?
public boolean exists(String key) {
return (st.get(key) != null);
}
// delete key
void delete(String key) {
Element e = st.get(key);
if (e != null) {
pq.remove(e);
st.remove(key);
}
}
// return the priority of a given key
int get(String key) {
Element e = st.get(key);
return e.priority;
}
// return minimum priority, error if empty
public int min() {
Element min = pq.first();
return min.priority;
}
// return minimum priority, error if empty
public int max() {
Element max = pq.last();
return max.priority;
}
// delete and return the minimum value, error if empty
public String delMin() {
Element min = pq.first();
pq.remove(min);
st.remove(min.key);
return min.key;
}
// delete and return the maximum value, error if empty
public String delMax() {
Element max = pq.last();
pq.remove(max);
st.remove(max.key);
return max.key;
}
// test client
public static void main(String[] args) {
XIndirectPQ pq = new XIndirectPQ();
pq.put("test", 31);
pq.put("is", 55);
pq.put("this", 25);
pq.put("not", 65);
pq.put("a", 36);
pq.put("this", 61); // changes the key
pq.delete("not");
while (!pq.isEmpty())
StdOut.println(pq.delMax());
}
}
|