001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
package algs32;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac BSTWithStaticNode.java
 *  Execution:    java BSTWithStaticNode
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/32bst/tinyST.txt
 *
 *  A symbol table implemented with a binary search tree.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java BSTWithStaticNode < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 *************************************************************************/

public class XBSTWithNonStaticNode<K extends Comparable<? super K>, V> {
  private Node root;             // root of XBSTWithStaticNode

  private class Node {
    public final K key;           // sorted by key
    public V val;           // associated data
    public Node left, right;  // left and right subtrees
    public int N;           // number of nodes in subtree

    public Node(K key, V val, int N) {
      this.key = key;
      this.val = val;
      this.N = N;
    }
  }

  // is the symbol table empty?
  public boolean isEmpty() { return size() == 0; }

  // return number of key-value pairs in XBSTWithStaticNode
  public int size() { return size(root); }

  // return number of key-value pairs in XBSTWithStaticNode rooted at x
  private int size(Node x) {
    if (x == null) return 0;
    else return x.N;
  }

  /* *********************************************************************
   *  Search XBSTWithStaticNode for given key, and return associated value if found,
   *  return null if not found
   ***********************************************************************/
  // does there exist a key-value pair with given key?
  public boolean contains(K key) { return get(key) != null; }

  // return value associated with the given key, or null if no such key exists
  public V get(K key) { return get(root, key); }

  private V get(Node x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) return get(x.left, key);
    else if (cmp > 0) return get(x.right, key);
    else              return x.val;
  }

  /* *********************************************************************
   *  Insert key-value pair into XBSTWithStaticNode
   *  If key already exists, update with new value
   ***********************************************************************/
  public void put(K key, V val) {
    if (val == null) { delete(key); return; }
    root = put(root, key, val);
    //assert check();
  }

  private Node put(Node x, K key, V val) {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = put(x.left,  key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else              x.val   = val;
    x.N = 1 + size(x.left) + size(x.right);
    return x;
  }

  /* *********************************************************************
   *  Delete
   ***********************************************************************/

  public void deleteMin() {
    if (isEmpty()) throw new Error("Symbol table underflow");
    root = deleteMin(root);
    //assert check();
  }

  private Node deleteMin(Node x) {
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }

  public void deleteMax() {
    if (isEmpty()) throw new Error("Symbol table underflow");
    root = deleteMax(root);
    //assert check();
  }

  private Node deleteMax(Node x) {
    if (x.right == null) return x.left;
    x.right = deleteMax(x.right);
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }

  public void delete(K key) {
    root = delete(root, key);
    //assert check();
  }

  private Node delete(Node x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) x.left  = delete(x.left,  key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
      if (x.right == null) return x.left;
      if (x.left  == null) return x.right;
      Node t = x;
      x = min(t.right);
      x.right = deleteMin(t.right);
      x.left = t.left;
    }
    x.N = size(x.left) + size(x.right) + 1;
    return x;
  }


  /* *********************************************************************
   *  Min, max, floor, and ceiling
   ***********************************************************************/
  public K min() {
    if (isEmpty()) return null;
    return min(root).key;
  }

  private Node min(Node x) {
    if (x.left == null) return x;
    else                return min(x.left);
  }

  public K max() {
    if (isEmpty()) return null;
    return max(root).key;
  }

  private Node max(Node x) {
    if (x.right == null) return x;
    else                 return max(x.right);
  }

  public K floor(K key) {
    Node x = floor(root, key);
    if (x == null) return null;
    else return x.key;
  }

  private Node floor(Node x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp <  0) return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else return x;
  }

  public K ceiling(K key) {
    Node x = ceiling(root, key);
    if (x == null) return null;
    else return x.key;
  }

  private Node ceiling(Node x, K key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0) {
      Node t = ceiling(x.left, key);
      if (t != null) return t;
      else return x;
    }
    return ceiling(x.right, key);
  }

  /* *********************************************************************
   *  Rank and selection
   ***********************************************************************/
  public K select(int k) {
    if (k < 0 || k >= size())  return null;
    Node x = select(root, k);
    return x.key;
  }

  // Return key of rank k.
  private Node select(Node x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if      (t > k) return select(x.left,  k);
    else if (t < k) return select(x.right, k-t-1);
    else            return x;
  }

  public int rank(K key) {
    return rank(key, root);
  }

  // Number of keys in the subtree less than x.key.
  private int rank(K key, Node x) {
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else              return size(x.left);
  }

  /* *********************************************************************
   *  Range count and range search.
   ***********************************************************************/
  public Iterable<K> keys() {
    return keys(min(), max());
  }

  public Iterable<K> keys(K lo, K hi) {
    Queue<K> queue = new Queue<>();
    keys(root, queue, lo, hi);
    return queue;
  }

  private void keys(Node x, Queue<K> queue, K lo, K hi) {
    if (x == null) return;
    int cmplo = lo.compareTo(x.key);
    int cmphi = hi.compareTo(x.key);
    if (cmplo < 0) keys(x.left, queue, lo, hi);
    if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
    if (cmphi > 0) keys(x.right, queue, lo, hi);
  }

  public int size(K lo, K hi) {
    if (lo.compareTo(hi) > 0) return 0;
    if (contains(hi)) return rank(hi) - rank(lo) + 1;
    else              return rank(hi) - rank(lo);
  }


  // height of this XBSTWithStaticNode (one-node tree has height 0)
  public int height() { return height(root); }
  private int height(Node x) {
    if (x == null) return -1;
    return 1 + Math.max(height(x.left), height(x.right));
  }

  /* ***********************************************************************
   *  Check integrity of XBSTWithStaticNode data structure
   *************************************************************************/
  private boolean check() {
    if (!isBST())            StdOut.println("Not in symmetric order");
    if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
    if (!isRankConsistent()) StdOut.println("Ranks not consistent");
    return isBST() && isSizeConsistent() && isRankConsistent();
  }

  // does this binary tree satisfy symmetric order?
  // Note: this test also ensures that data structure is a binary tree since order is strict
  private boolean isBST() {
    return isBST(root, null, null);
  }

  // is the tree rooted at x a XBSTWithStaticNode with all keys strictly between min and max
  // (if min or max is null, treat as empty constraint)
  // Credit: Bob Dondero's elegant solution
  private boolean isBST(Node x, K min, K max) {
    if (x == null) return true;
    if (min != null && x.key.compareTo(min) <= 0) return false;
    if (max != null && x.key.compareTo(max) >= 0) return false;
    return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
  }

  // are the size fields correct?
  private boolean isSizeConsistent() { return isSizeConsistent(root); }
  private boolean isSizeConsistent(Node x) {
    if (x == null) return true;
    if (x.N != size(x.left) + size(x.right) + 1) return false;
    return isSizeConsistent(x.left) && isSizeConsistent(x.right);
  }

  // check that ranks are consistent
  private boolean isRankConsistent() {
    for (int i = 0; i < size(); i++)
      if (i != rank(select(i))) return false;
    for (K key : keys())
      if (key.compareTo(select(rank(key))) != 0) return false;
    return true;
  }


  /* ***************************************************************************
   *  Test client
   *****************************************************************************/
  public static void main(String[] args) {
    XBSTWithNonStaticNode<String, Integer> st = new XBSTWithNonStaticNode<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
  }
}