001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Exercise 3.1.16 3.1.17 3.1.30 (Solution published at http://algs4.cs.princeton.edu/)
package algs31;
import stdlib.*;
import algs13.Queue;
/* ***********************************************************************
 *  Compilation:  javac BinarySearchST.java
 *  Execution:    java BinarySearchST
 *  Dependencies: StdIn.java StdOut.java
 *  Data files:   http://algs4.cs.princeton.edu/31elementary/tinyST.txt
 *
 *  Symbol table implementation with binary search in an ordered array.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *
 *  % java BinarySearchST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 *************************************************************************/

public class BinarySearchST<K extends Comparable<? super K>, V> {
  private static final int INIT_CAPACITY = 2;
  private K[] keys;
  private V[] vals;
  private int N = 0;

  // create an empty symbol table with default initial capacity
  public BinarySearchST() { this(INIT_CAPACITY); }

  // create an empty symbol table with given initial capacity
  @SuppressWarnings("unchecked")
  public BinarySearchST(int capacity) {
    keys = (K[]) new Comparable[capacity];
    vals = (V[]) new Object[capacity];
  }

  // resize the underlying arrays
  @SuppressWarnings("unchecked")
  private void resize(int capacity) {
    if (capacity <= N) throw new IllegalArgumentException ();
    K[] tempk = (K[]) new Comparable[capacity];
    V[] tempv = (V[]) new Object[capacity];
    for (int i = 0; i < N; i++) {
      tempk[i] = keys[i];
      tempv[i] = vals[i];
    }
    vals = tempv;
    keys = tempk;
  }


  // is the key in the table?
  public boolean contains(K key) { return get(key) != null; }

  // number of key-value pairs in the table
  public int size() { return N; }

  // is the symbol table empty?
  public boolean isEmpty() { return size() == 0; }

  // return the value associated with the given key, or null if no such key
  public V get(K key) {
    if (isEmpty()) return null;
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) return vals[i];
    return null;
  }

  // return the number of keys in the table that are smaller than given key
  public int rank(K key) {
    int lo = 0, hi = N-1;
    while (lo <= hi) {
      int m = lo + (hi - lo) / 2;
      int cmp = key.compareTo(keys[m]);
      if      (cmp < 0) hi = m - 1;
      else if (cmp > 0) lo = m + 1;
      else return m;
    }
    return lo;
  }


  // Search for key. Update value if found; grow table if new.
  public void put(K key, V val)  {
    if (val == null) { delete(key); return; }

    int i = rank(key);

    // key is already in table
    if (i < N && keys[i].compareTo(key) == 0) {
      vals[i] = val;
      return;
    }

    // insert new key-value pair
    if (N == keys.length) resize(2*keys.length);

    for (int j = N; j > i; j--)  {
      keys[j] = keys[j-1];
      vals[j] = vals[j-1];
    }
    keys[i] = key;
    vals[i] = val;
    N++;

    //assert check();
  }


  // Remove the key-value pair if present
  public void delete(K key)  {
    if (isEmpty()) return;

    // compute rank
    int i = rank(key);

    // key not in table
    if (i == N || keys[i].compareTo(key) != 0) {
      return;
    }

    for (int j = i; j < N-1; j++)  {
      keys[j] = keys[j+1];
      vals[j] = vals[j+1];
    }

    N--;
    keys[N] = null;  // to avoid loitering
    vals[N] = null;

    // resize if 1/4 full
    if (N > 0 && N == keys.length/4) resize(keys.length/2);

    //assert check();
  }

  // delete the minimum key and its associated value
  public void deleteMin() {
    if (isEmpty()) throw new Error("Symbol table underflow error");
    delete(min());
  }

  // delete the maximum key and its associated value
  public void deleteMax() {
    if (isEmpty()) throw new Error("Symbol table underflow error");
    delete(max());
  }


  /* ***************************************************************************
   *  Ordered symbol table methods
   *****************************************************************************/
  public K min() {

    if (isEmpty()) return null;
    return keys[0];
  }

  public K max() {
    if (isEmpty()) return null;
    return keys[N-1];
  }

  public K select(int k) {
    if (k < 0 || k >= N) return null;
    return keys[k];
  }

  public K floor(K key) {
    int i = rank(key);
    if (i < N && key.compareTo(keys[i]) == 0) return keys[i];
    if (i == 0) return null;
    else return keys[i-1];
  }

  public K ceiling(K key) {
    int i = rank(key);
    if (i == N) return null;
    else return keys[i];
  }

  public int size(K lo, K hi) {
    if (lo.compareTo(hi) > 0) return 0;
    if (contains(hi)) return rank(hi) - rank(lo) + 1;
    else              return rank(hi) - rank(lo);
  }

  public Iterable<K> keys() {
    return keys(min(), max());
  }

  public Iterable<K> keys(K lo, K hi) {
    Queue<K> queue = new Queue<>();
    if (lo == null && hi == null) return queue;
    if (lo == null) throw new Error("lo is null in keys()");
    if (hi == null) throw new Error("hi is null in keys()");
    if (lo.compareTo(hi) > 0) return queue;
    for (int i = rank(lo); i < rank(hi); i++)
      queue.enqueue(keys[i]);
    if (contains(hi)) queue.enqueue(keys[rank(hi)]);
    return queue;
  }


  /* ***************************************************************************
   *  Check internal invariants
   *****************************************************************************/

  private boolean check() {
    return isSorted() && rankCheck();
  }

  // are the items in the array in ascending order?
  private boolean isSorted() {
    for (int i = 1; i < size(); i++)
      if (keys[i].compareTo(keys[i-1]) < 0) return false;
    return true;
  }

  // check that rank(select(i)) = i
  private boolean rankCheck() {
    for (int i = 0; i < size(); i++)
      if (i != rank(select(i))) return false;
    for (int i = 0; i < size(); i++)
      if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
    return true;
  }


  /* ***************************************************************************
   *  Test client
   *****************************************************************************/
  public static void main(String[] args) {
    StdIn.fromFile("data/tiny.txt");

    BinarySearchST<String, Integer> st = new BinarySearchST<>();
    for (int i = 0; !StdIn.isEmpty(); i++) {
      String key = StdIn.readString();
      st.put(key, i);
    }
    for (String s : st.keys())
      StdOut.println(s + " " + st.get(s));
  }
}