01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
package algs11;
import stdlib.*;
/* ***********************************************************************
* Compilation: javac Binomial.java
* Execution: java Binomial N k p
* Dependencies: StdOut.java
*
* Reads in N, k, and p as command-line arguments and prints out
* (N choose k) p^k (1-p)^N-k.
*
* % java Binomial 5 2 .25
* 0.263671875
* 0.263671875
*
* % java Binomial 5 3 .25
* 0.087890625
* 0.087890625
*
* % java Binomial 5 0 .25
* 0.2373046875
* 0.2373046875
*
* % java Binomial 5 5 .25
* 9.765625E-4
* 9.765625E-4
*
*************************************************************************/
public class XBinomial {
// slow
public static double binomial1(int N, int k, double p) {
if (N == 0 && k == 0) return 1.0;
if (N < 0 || k < 0) return 0.0;
return (1.0 - p) *binomial1(N-1, k, p) + p*binomial1(N-1, k-1, p);
}
// memoization
public static double binomial2(int N, int k, double p) {
double[][] b = new double[N+1][k+1];
// base cases
for (int i = 0; i <= N; i++)
b[i][0] = Math.pow(1.0 - p, i);
b[0][0] = 1.0;
// recursive formula
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= k; j++) {
b[i][j] = p * b[i-1][j-1] + (1.0 - p) *b[i-1][j];
}
}
return b[N][k];
}
public static void main(String[] args) {
args = new String[] { "5", "2", ".25" };
//args = new String[] { "5", "3", ".25" };
//args = new String[] { "5", "0", ".25" };
//args = new String[] { "5", "5", ".25" };
int N = Integer.parseInt(args[0]);
int k = Integer.parseInt(args[1]);
double p = Double.parseDouble(args[2]);
StdOut.println(binomial1(N, k, p));
StdOut.println(binomial2(N, k, p));
}
}
|